首页> 外文OA文献 >Studying and Enhancing Talking Condition Recognition in Stressful and Emotional Talking Environments Based on HMMs, CHMM2s and SPHMMs
【2h】

Studying and Enhancing Talking Condition Recognition in Stressful and Emotional Talking Environments Based on HMMs, CHMM2s and SPHMMs

机译:在压力和压力下学习和提高会话状态识别   基于Hmm,CHmm2和spHmm的情感交谈环境

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The work of this research is devoted to studying and enhancing talkingcondition recognition in stressful and emotional talking environments(completely two separate environments) based on three different and separateclassifiers. The three classifiers are: Hidden Markov Models (HMMs),Second-Order Circular Hidden Markov Models (CHMM2s) and Suprasegmental HiddenMarkov Models (SPHMMs). The stressful talking environments that have been usedin this work are composed of neutral, shouted, slow, loud, soft and fasttalking conditions, while the emotional talking environments are made up ofneutral, angry, sad, happy, disgust and fear emotions. The achieved results inthe current work show that SPHMMs lead each of HMMs and CHMM2s in improvingtalking condition recognition in stressful and emotional talking environments.The results also demonstrate that talking condition recognition in stressfultalking environments outperforms that in emotional talking environments by2.7%, 1.8% and 3.3% based on HMMs, CHMM2s and SPHMMs, respectively. Based onsubjective assessment by human judges, the recognition performance of stressfultalking conditions leads that of emotional ones by 5.2%.
机译:这项研究的工作致力于基于三个不同且独立的分类器,在压力和情感交谈环境(完全是两个独立的环境)中研究和增强交谈条件的识别。这三个分类器是:隐马尔可夫模型(HMM),二阶圆形隐马尔可夫模型(CHMM2)和超分段隐马尔可夫模型(SPHMM)。在这项工作中使用的压力性谈话环境由中立,大喊,缓慢,响亮,柔和和快速的谈话条件组成,而情绪性谈话环境则由中性,愤怒,悲伤,快乐,厌恶和恐惧情绪组成。在当前工作中取得的结果表明,SPHMM领先HMM和CHMM2在改善压力和情感谈话环境中的交谈条件识别方面的结果,还表明压力交谈环境中的交谈条件识别优于情绪交谈环境中的交谈条件识别的2.7%,1.8%和HMM,CHMM2和SPHMM分别为3.3%。根据人类法官的主观评估,压力谈话条件的识别性能比情绪谈话条件的识别性能高5.2%。

著录项

  • 作者

    Shahin, Ismail;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号